© APPLIED RESEARCH MANAGEMENT INC
"IF YOUR ACTIONS INSPIRE OTHERS TO DREAM MORE, LEARN MORE, DO MORE AND BECOME MORE, YOU ARE A LEADER."
DNA - PATERNATY
DNA paternity testing is the use of DNA profiles to determine whether an individual is the biological parent of another individual. Paternity testing can be especially important when the rights and duties of the father are in issue and a child's paternity is in doubt. Tests can also determine the likelihood of someone being a biological grandparent. Though genetic testing is the most reliable standard, older methods also exist, including ABO blood group typing, analysis of various other proteins and enzymes, or using human leukocyte antigen antigens. The current techniques for paternity testing are using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Paternity testing can now also be performed while the woman is still pregnant from a blood draw. These are other newer techniques:
Generation 2, The advent of next-generation sequencing (NGS) technologies has reduced sequencing cost by orders of magnitude and significantly increased the throughput, making whole-genome sequencing a possible way for obtaining global genomic information about patients on whom clinical actions may be taken. However, the benefits offered by NGS technologies come with a number of challenges that must be adequately addressed before they can be transformed from research tools to routine clinical practices.
Generation 3, Nanopore sequencing is a third generation approach used in the sequencing of biopolymers - specifically, polynucleotides in the form of DNA or RNA. Using nanopore sequencing, a single molecule of DNA or RNA can be sequenced without the need for PCR amplification or chemical labeling of the sample. At least one of these aforementioned steps is necessary in the procedure of any previously developed sequencing approach. Nanopore sequencing has the potential to offer relatively low-cost genotyping, high mobility for testing, and rapid processing of samples with the ability to display results in real-time. Publications on the method outline its use in rapid identification of viral pathogens, monitoring Ebola, environmental monitoring, food safety monitoring, human genome sequencing, plant genome sequencing, monitoring of antibiotic resistance, haplotyping and other applications.
DNA testing is currently the most advanced and accurate technology to determine parentage. In a DNA paternity test, the result (called the 'probability of parentage) [failed verification] is 0% when the alleged parent is not biologically related to the child, and the probability of parentage is typically 99.99% when the alleged parent is biologically related to the child. However, while almost all individuals have a single and distinct set of genes, rare individuals, known as "chimeras", have at least two different sets of genes, which can result in a false negative result if their reproductive tissue has a different genetic make-up from the tissue sampled for the test.